Archive

Tag Archives: Solar energy



A pedido de diversas companhias fotovoltaicas europeias, lideradas pela gigante alemã SolarWorld, a Comissão Europeia (CE) deu início nesta quinta-feira (6) às investigações que vão analisar se empresas solares chinesas são realmente favorecidas por subsídios considerados ilegais pela Organização Mundial do Comércio (OMC).

De acordo com a aliança das companhias europeias, EU ProSun, os preços dos painéis fotovoltaicos caíram 75% entre 2008 e 2011 graças à pressão dos produtos chineses, que estariam sendo vendidos abaixo do valor de mercado – prática conhecida como dumping.

O presidente da EU ProSun, Milan Nitzschke, declarou à agência Reuters que se nada for feito o setor se transformará em um monopólio chinês. Atualmente, os painéis chineses ocupam 60% do mercado europeu.

O Ministério de Comércio da China afirmou que vê a investigação com “muito pesar” e que qualquer restrição aos seus produtos colocará em risco a expansão de uma economia de baixo carbono.

“Restringir os painéis solares chineses não vai apenas ferir os interesses da China ou da Europa, mas atrapalhará o desenvolvimento do setor global de energias limpas”, disse Shen Danyang, porta-voz do Ministério de Comércio.

O começo da investigação europeia é apenas o mais novo capítulo de uma briga que começou em maio, quando o Departamento do Comércio dos Estados Unidos (DOC) impôs taxas sobre produtos solares chineses devido às políticas de subsídios da China. Em alguns casos, os tributos chegam a 250%.

As companhias europeias cobraram por medidas semelhantes da União Europeia, que podem vir a ser tomadas se a CE comprovar a prática de dumping.

Autor: Fabiano Ávila
Fonte: Instituto CarbonoBrasil
Original: http://goo.gl/wrRCF


FOLLOW US / SIGA-NOS:
              




A new transparent solar film developed by UCLA researchers, laid over a piece of glass, is nearly invisible. The breakthrough makes possible windows that generate electricity and many other inexpensive applications. (UCLA)

One of the holy grails of solar cell technology may have been found, with researchers at UCLA announcing they have created a new organic polymer that produces electricity, is nearly transparent and is more durable and malleable than silicon.

The applications are mind-boggling. Windows that produce electricity. Buildings wrapped in transparent solar cells. Laptops and phones – or even cars or planes – whose outer coverings act as chargers. It might even be sprayed on as a liquid. The promise of cheap and easy-to-apply site-generated solar electricity might now be a lot closer to reality.

Of course, the idea of solar films and solar plastics is not new. The breakthrough to making a transparent film, however, came with isolating only one band of light in the spectrum.

“[A solar film] harvests light and turns it into electricity. In our case, we harvest only the infrared part,” says Professor Yang Yang at UCLA’s California Nanosystems Institute, who has headed up the research on the new photovoltaic polymer. Absorbing only the infrared light, he explains, means the material doesn’t have to be dark or black or blue, like most silicon photovoltaic panels. It can be clear. “We have developed a material that absorbs infrared and is all transparent to the visible light.”

“And then we also invented a new electrode, a metal, that is also transparent. So we created a new solar cell,” Yang adds.

Well, the metal is actually not transparent, Yang points out; it’s just so small that you can’t see it. The new polymer incorporates silver nanowires about 0.1 microns thick, about one-thousandth the width of a human hair, and titanium dioxide nonoparticles as an electrode. When in liquid form, it is as clear as a glass of water, and when applied to a hard, flat surface as a film it is meant to be invisible to the eye.

Thin-film PV currently exists that can be applied to windows, but only on windows that can be tinted. Many buildings use tinted windows as a way to cut down infrared radiation and thus keep out excess heat. Because this new transparent film is meant specifically to absorb in the infrared spectrum, it may be able to cut air conditioning bills and generate electricity at the same time, while leaving windows clear. Technically, however, the entire building could be covered with the thin film and not affect colors.

Isolating the infrared spectrum is currently a less-efficient way to make electricity, and Yang says his group’s technology converts about 6% of the sun’s energy into electricity, as opposed to 11% or 12% from commercial PV. But, he says, that can change.

“We have to work hard in the lab to expand the coverage of the infrared,” says Yang. “Because infrared is huge, huge energy there, and we only harvest right now less than one-third of the infrared. Our efficiency could double or almost triple in the future. There are some limitations, but we should be able to go to 10% in the next 3 to 5 years.”

Coincidentally, the company that has launched the most high-profile effort to mass-manufacture photovoltaic polymers, Konarka Technologies, involved Yang’s PhD adviser, the late Sukant Tripathy. That company’s colored plastics use full-spectrum light to create low-cost PV that Tripathy hoped would bring cheap electricity to his home country of India. The company made big news earlier this year when it filed for Chapter 7 bankruptcy.

Yang says that he will have to carry on his former professor’s dream to bring low-cost electricity to places like India and China, a pursuit that will necessitate a new way of looking at electricity.

“I think that solar has to take a different attitude,” says Yang. “Whenever people think about solar, they think about the big silicon panels that they put on their roof, or the big solar farms that SoCal Edison builds out in the desert. But for the future of energy use, we must think about how to harvest energy whenever and wherever it is possible. If we can change the concept that energy has to come from one source, which is the power company, that the supply should not be subject to the limitations of the power grid, a lot of new things can happen.”

Author: Dean Kuipers
Source: Los Angeles Times
Original: http://goo.gl/skMnL


FOLLOW US / SIGA-NOS:
              



Cientistas criaram uma forma de combinar a proteína da fotossíntese que converte luz em energia do espinafre com silício, material usado com frequências em placas solares


(Fotografia: Universidade Vanderbilt)

Espinafre não combina apenas com o Marinheiro Popeye. Cientistas da Universidade Vanderbilt, nos Estados Unidos, provaram isso ao turbinar a produção de energia solar com esse tipo de hortaliça.

A equipe criou uma forma de combinar a proteína da fotossíntese que converte luz em energia do espinafre com silício, material usado com frequências em placas de energia solar.

Segundo a pesquisa, a combinação produz uma corrente elétrica considerada quase 1000 vezes maior do que se a proteína fosse usada com outros tipos de metal. Além disso, a voltagem obtida também foi maior.

Agora, os cientistas querem construir uma placa solar funcional com esses componentes. O painel deve ter 60 centímetros de tamanho, o suficiente para acender pequenos aparatos elétricos, como lâmpadas.

O projeto inovador já foi premiado pela Agência de Proteção Ambiental dos EUA e em uma feira nacional de design sustentável.

Autor: Vanessa Daraya (Info)
Fonte: Exame
Original: http://goo.gl/pCKOS


FOLLOW US / SIGA-NOS:
              



The new Blackfriars station, which is being built on a bridge spanning the River Thames, is on its way to becoming the world’s largest solar bridge after Solarcentury begun the installation of over 4,400 solar photovoltaic panels

The solar panels will generate an estimated 900,000kWh of electricity every year, providing 50% of the station’s energy and reducing CO2 emissions by an estimated 511 tonnes per year. In addition to solar panels, other energy saving measures at the new station will include rain harvesting systems and sun pipes for natural lighting. Photograph: Ralph Hodgson/Solar Century
Ralph Hodgson

Source: The Guardian
Original: http://goo.gl/fJ8Ww


FOLLOW US / SIGA-NOS:
              


Um estudo divulgado na terça-feira, 3 de julho, pela Empresa de Pesquisa Energética (EPE), do Ministério de Minas e Energia, mostra que a produção residencial de energia solar (a chamada geração distribuída) já é economicamente viável para 15% dos domicílios brasileiros. A produção de energia solar em grande escala (geração centralizada), no entanto, ainda é inviável, mesmo com incentivos governamentais.

De acordo com a pesquisa da EPE, o custo da geração nas residências brasileiras, a partir de um equipamento de pequena potência, é R$ 602 por megawatt-hora (MWh) mais barato do que a energia vendida por dez das mais de 60 distribuidoras de energia, como a da Ampla, responsável pelo abastecimento de municípios do Grande Rio e interior fluminense.

O cálculo é feito com base no custo médio de instalação de um painel com a menor potência, R$ 38 mil. Graças a novas resoluções da Agência Nacional de Energia Elétrica (Aneel), publicadas neste ano, os consumidores que instalarem painéis solares em suas casas ou condomínios podem não apenas reduzir a quantidade de energia comprada das distribuidoras, como também vender o excedente da energia produzida para essas empresas.

Segundo o presidente da EPE, Maurício Tolmasquim, esse mercado potencial pode crescer bastante se forem concedidos incentivos como o financiamento à compra dos painéis e conversores fotovoltaicos (equipamentos que transformam a luz do sol em energia elétrica), a isenção fiscal para a produção desses equipamentos no país e a redução do Imposto de Renda para os consumidores.

Espera por viabilidade

Caso o governo esteja disposto a criar os três tipos de incentivos, ao mesmo tempo, a energia solar pode se tornar competitiva para 98% dos consumidores residenciais brasileiros. “Hoje a geração distribuída já é mais ou menos interessante em alguns lugares. Agora, para ampliar, seria necessário ter incentivos ou esperar o preço [do equipamento] cair”, apontou Tolmasquim.

Por outro lado, o estudo mostra que a geração centralizada, isto é, produzida em larga escala por usinas comerciais, ainda não é viável economicamente. Hoje, o custo de produção da energia solar gira em torno de R$ 405 por MWh, enquanto a média do preço de outras fontes de energia, nos últimos leilões do governo, foi R$ 150 por MWh.

Mesmo com incentivos, como a redução de impostos, que barateiem em 28% o preço da energia, a solar não seria viável, porque ainda custaria o dobro da média cobrada nos leilões de venda de energia.

Segundo Tolmasquim, o país tem as opções de esperar o custo da energia solar diminuir para colocá-la em leilões ou de criar um leilão específico para que não haja disputa com outras fontes mais baratas, como a eólica.

Tolmasquim explicou que a criação de um leilão específico é uma opção para criar um mercado e desenvolver tecnologicamente o país, a fim de acelerar a redução do custo. “Mas teria que ser vendida uma quantidade pequena [de energia] para não onerar o consumidor.”

Há ainda a opção de abrir a possibilidade para que empreendimentos de geração de energia solar disputem o leilão de energia com outras fontes. A expectativa da Agência Internacional de Energia é que a solar esteja competitiva com outras fontes no mundo a partir de 2020.

Tolmasquim ressaltou, no entanto, que não é possível saber quando a energia solar será competitiva para produção em larga escala no Brasil. Há hoje no país apenas oito empreendimentos, que produzem apenas 1,5 megawatt (MW) de um total de 118 mil MW do país.

Autor: Vitor Abdala
Fonte: Agência Brasil
Original: http://goo.gl/Uq7UJ


FOLLOW US / SIGA-NOS:
              



Manuel Lopes tem 40 anos e sonha com “o primeiro aldeamento vivo do mundo”, em que várias casas de um bairro girem em sincronia como num campo de girassóis, de modo a recolher mais energia do que consomem.

Para este aluno de mestrado na Faculdade de Arquitetura da Universidade do Porto (FAUP), o futuro passa também pela apresentação do projeto ‘Casas em Movimento’ na Solar Decathlon, a maior feira do mundo especializada em arquitetura sustentável, que em setembro deste ano se realiza em Madrid (Espanha).

A maquete já está pronta e ilustra “o sistema mecânico que permite que a cobertura da casa, revestida a painéis fotovoltaicos, se comporte com um efeito de girassol”, o que pode permitir produzir “cerca de duas vezes e meia mais eletricidade do que precisa”.

Manuel Lopes conta até com o apoio do vencedor do prémio Pritzker de 2011, Eduardo Souto de Moura, que assegurou que tinha entre mãos um projeto “à Souto de Moura” e que já garantiu a presença na Solar Decathlon.

A ideia começou por ser desenvolvida no âmbito do projeto LIDERA da Universidade do Porto, um programa de apoio a iniciativas multidisciplinares que fomentem a auto-aprendizagem.

Em entrevista à Lusa, Manuel contou que começou por “desenvolver uma solução que permitisse entender os painéis fotovoltaicos enquanto parte integrante da casa e não como mero apêndice que se colocasse em cima dela.”

“Os movimentos da casa surgiram como solução para obter uma maior produção de energia”, explicou, “sempre na perspetiva de conseguir um ganho térmico de forma a conseguir mais sombra durante o verão e permitindo que o sol incida mais na fachada durante o inverno”, dando assim azo a um ganho térmico na ordem dos 60 a 80 por cento.

Além da plataforma giratória que movimenta toda a estrutura da casa, o projeto contempla uma pala, ou cobertura, revestida a painéis fotovoltaicos, que possui rotação própria e que “por si só já garante um ganho de 20% em produção de energia”.

Manuel Lopes revelou ainda que “estes complementos não têm que existir em simultâneo”, podendo ser adquiridos posteriormente e tirando partido da estrutura modular da casa, que pode até pagar a sua própria evolução com os ganhos energéticos que vai permitindo.

“Pode mesmo, ao longo do seu ciclo de vida, não efetuar qualquer movimento, porque a casa produz sempre muito mais energia do que utiliza, mesmo tendo em conta os consumos das movimentações mecânicas da cobertura ou de toda a estrutura”, garantiu.

Manuel Lopes lidera a única equipa nacional representada na Solar Decathlon e o objetivo será também “mostrar os recursos do país, a partir de elementos como o próprio revestimento da casa, que é feito em cortiça”.

A promoção nacional será fundamental na apresentação do projeto, até porque a organização “avalia desde a comunicação à gastronomia”.

Por isso, vai levar um chef de cozinha para “mostrar como se come bem por cá” e quer ainda levar um grupo de fados, além de incorporar a cultura portuguesa no projeto ao utilizar a calçada portuguesa nos arranjos exteriores da maquete e do protótipo.

A ideia das ‘Casas em Movimento’ conta já com apoios de parceiros que vão da EDP à EFACEC ou a SONAE, uma ajuda “essencial” para a construção do protótipo, que deverá custar entre 250 mil e 300 mil euros.

O arquiteto sonha em projetar um destes aldeamentos vivos nas encostas do Douro, até porque acredita que com a industrialização e comercialização esse valor possa descer até metade, para ser depois compensado pela produção energética.

Em Madrid, a exibição do protótipo à escala real de uma das ‘Casas em Movimento’ deverá permitir que cerca de 200 mil visitantes conheçam não só a arquitetura, mas a cultura portuguesa.

Fonte: LUSA / SIC Notícias
Original: http://bit.ly/JF7Nr1


FOLLOW US / SIGA-NOS:
              




Ileene Anderson, left, of the Center for Biological Diversity and April Sall of the Wildlands Conservancy, standing in the Mojave Desert near Death Valley, are worried about solar projects’ effect on local ecosystems. (Mark Boster / Los Angeles Times / March 20, 2012)

AMARGOSA VALLEY, Calif. — April Sall gazed out at the Mojave Desert flashing past the car window and unreeled a story of frustration and backroom dealings.

Her small California group, the Wildlands Conservancy, wanted to preserve 600,000 acres of the Mojave. The group raised $45 million, bought the land and deeded it to the federal government.

The conservancy intended that the land be protected forever. Instead, 12 years after accepting the largest land gift in American history, the federal government is on the verge of opening 50,000 acres of that bequest to solar development.

Even worse, in Sall’s view, the nation’s largest environmental organizations are scarcely voicing opposition. Their silence leaves the conservancy and a smattering of other small environmental organizations nearly alone in opposing energy development across 33,000 square miles of desert land.

“We got dragged into this because the big groups were standing on the sidelines and we were watching this big conservation legacy practically go under a bulldozer,” said Sall, the organization’s conservation director. “We said, ‘We can’t be silent anymore.’ ”

Similar stories can be heard across the desert Southwest. Small environmental groups are fighting utility-scale solar projects without the support of what they refer to as “Gang Green,” the nation’s big environmental players.

Local activists accuse the Sierra Club, the Natural Resources Defense Council, Defenders of Wildlife, the Wilderness Society and other venerable environmental groups of acquiescing to the industrialization of the desert because they believe large-scale solar power is essential to slowing climate change.

Janine Blaeloch, director of the Western Lands Project, a small public lands watchdog group, said Gang Green’s members are compliant in order to make themselves more inviting to major foundations. In recent years, grants for projects focusing on climate change and energy have become the two top-funded issues in environmental philanthropy. Foundations have awarded tens of millions of dollars in grants to environmental groups that make renewable energy a top priority.

“It’s not that they solely and directly make decisions based on funding, but they keep their eyes open to what foundations want,” Blaeloch said.

As a result, “you’ve got enviros exactly where industry wanted them to be,” she said.

Big environmental organizations say they have agonized over how to approach the issue. They acknowledge that development can have irreversible effects on ecosystems. But they are reluctant to stand in the way of renewable energy projects they regard as a vital response to climate change, which they consider the nation’s most serious environmental challenge.

The Sierra Club, NRDC and Defenders of Wildlife filed suit last week to stop the troubled Calico solar project northeast of Los Angeles. But for the most part the big players have embraced solar development.

Instead of following the old adversarial formula of saying no to everything, they have adopted an approach they call, “Getting to yes.”

‘Green halo’ effect

Grass-roots groups say that strategy has failed to protect the desert. What’s worse, they say, is that the imprimatur of such groups as the Sierra Club has provided a ‘”green halo” to energy companies and the government — making it easy for them to ignore local environmental concerns.

Two major projects underway in the Mojave illustrate the divide between local and national groups.

Desert activists vigorously oppose the BrightSource Energy project in the east Mojave’s Ivanpah Valley and NextEra’s Genesis solar plant 20 miles west of Blythe. National groups have not mounted a strong challenge to either project.

When BrightSource was planning the Ivanpah installation, the big environmental players urged the firm to move the bulk of the project closer to Interstate 5 to avoid prime habitat for the desert tortoise, a protected species. The company responded by reducing its total footprint by 12%, which didn’t solve the problem.

After construction began, large numbers of desert tortoises were discovered. According to federal biologists, BrightSource is now responsible for relocating and caring for 95% of all the tortoises expected to be found on all solar project sites in the Mojave.

Author: Julie Cart
Source: Los Angeles Times
Original: http://lat.ms/I0o0Zf


FOLLOW US / SIGA-NOS:
              




German solar panel manufacturer Q-Cells filed for bankruptcy on Tuesday. (Photography: AFP)

The German solar industry is at a turning point. The bankruptcy of Q-Cells this week shows that the days of German solar cell production are numbered. Asian competitors took the lead years ago, and German government subsidies were part of the problem.

It wasn’t so long ago that people viewed Q-Cells as an energy company of the future. At one point, it was the world’s largest manufacturer of solar cells and quarter after quarter, it topped analysts’ expectations. The company proved to be a money-making machine even during the financial crisis, with some believing it might one day grow to become part of Germany’s DAX index of benchmark companies on the stock exchange.

At the end of 2007, the company was valued at close to €8 billion ($10.7 billion at today’s rates). Q-Cells’ production facilities were located in the city of Bitterfeld-Wolfen, in a former lignite mining area in the eastern German state of Saxony-Anhalt. The area was even dubbed “Solar Valley,” a play on California’s Silicon Valley.
For a some time now, though, the days have been growing darker in Solar Valley, and with this week’s bankruptcy announcement by Q-Cells, things are looking to get even darker. On Tuesday, the company as expected submitted its official request to begin bankruptcy proceedings. The energy company of the future looks as though it may no longer have one. The company, it turns out, simply wasn’t prepared for the fast changes that have buffeted the industry.

In 2011, Q-Cells posted a loss of €846 million. As of last Tuesday, the firm had a marginal value of only €35 million and Q-Cells’ share price had plunged to just 9 cents. In Bitterfeld-Wolfen, concerns are growing about massive job losses among the 2,200 Q-Cells workers in the city.

But Q-Cells’ insolvency also comes as a great shock to the Germany’s solar industry. It is already the fourth major bankruptcy in a sector in crisis, and it underscores the degree to which German solar firms are being outpaced by competition from Asia — despite billions in German government subsidies granted each year to the industry. And despite solar energy gradually becoming more competitive, the setbacks are rapidly mounting.

A String of Bankruptcies

In December 2011, two major solar companies slid into bankruptcy: Berlin-based Solon and Erlangen-based Solar Millennium. In the case of Solon, Indian firm Microsol acquired the core business; but of the company’s 1,000 employees, only 400 remain employed today. Solar Millennium’s bankruptcy came as a major blow to thousands of small investors who had lent the firm money.

In March 2012, Freiburg-based Scheuten Solar, the firm that presented what was the world’s largest solar module at the time eight years ago, declared bankruptcy. The same month, power plant producer Solarhybrid and the Frankfurt an der Oder-based Odersun, which had been prestige projects supported by political leaders in the eastern state of Brandenburg, also filed for insolvency proceedings. Other bankruptcies are likely to follow.

The worst hit in the German solar crisis are companies that made bad business decisions. Most of the companies effected failed to wean themselves from reliance on government subsidies. The companies had all been aware that the market was rapidly changing, but they reacted too late or too slowly. Solar subsidies had been a highly effective political means of promoting the environmentally friendly technology, but in a rapidly maturing market, they are quickly losing their impact.

And the problem isn’t the recent cuts to solar subsidies. The problem has been mismanagement across the industry in Germany.

Q-Cells’ Mistakes

Q-Cells is the best example. The company first began outsourcing large shares of its production to Malaysia in the summer of 2011. By then, it had been clear for years that Germans could no longer compete with Asian firms in the sector. The writing had long been on the wall and it didn’t take a clairvoyant to see it.

In technological terms, solar cells are relatively easy to copy and manufacture, and Germany, with its comparably expensive labor market, is no longer the place to produce them. Much of the manufacturing of solar cells in Germany is already automated, but it is still considerably cheaper to operate a factory in a country like China, where costs are lower for everything from factory construction to paying the cleaning crew. In addition, Beijing has made the solar sector a priority and the government is providing many manufacturers with loans at highly favorable interest rates. Even worse, the German government has also directly and indirectly subsidizedChinese solar companies to the tune of €100 million as part of development aid efforts aimed at promoting China’s green industries.

The cut-throat nature of the competition, of course, is nothing new. But in recent years it has been hidden by the German boom in demand from 2009 to 2011, the result of generous efforts from Berlin to promote solar power. Even companies that had fallen behind the Asian competition were having no trouble moving large quantities of solar cells. The situation is reminiscent of Coyote running off a cliff while chasing Roadrunner, running in mid-air for a few seconds and then plummeting into the abyss.

German Subsidies Boom Strengthens

We are now seeing the fall. And ironically, just as the boom was fuelled by government money, those same subsidies have accelerated the bust. The massive demand created led to mass production, particularly in China — and prices fell rapidly as a result. In 2011 alone, the price for modules declined by 30 to 40 percent — far faster than German companies could reduce their manufacturing costs. The trend is expected to continue this year.

Meanwhile, Asian companies continue to steam ahead of their German competitors. In 2008, China manufactured 33 percent of the world’s solar cells, but that figure grew to 57 percent last year. This week, the German government significantly reduced its subsidies for promoting solar energy. But the boom in cheap cells will continue and it will radically change the solar energy market.

The change can also be seen in the case of Solar Millennium, a company that didn’t even produce solar cells. Rather, it built solar thermal power plants that transformed solar energy into thermal energy. Unfortunately, it’s a technology that has recently been put on the back burner because of the availability of inexpensive photovoltaic cells. Solar Millennium suffered a number of setbacks when projects planned in the United States failed to materialize.

How the Industry Is Changing

In the medium term, fierce competition with Asian companies will also likely affect other parts of the solar energy industry in Germany. For example, it could hit companies like Centrotherm, which manufactures machines that are used in the automated production of solar cells. Development of that equipment is certainly more complex, but Asian manufacturers are already presenting an increasing number of products at industry trade shows like Intersolar.

This won’t mean the instant death of the German industry. Some companies will remain, particularly those that didn’t just try to earn easy money through the government subsidies, but instead adapted to industry changes and developed competitive business models. Take Juwi, for example, which develops large solar parks using cheaper modules from US manufacturer First Solar and has also created a secondary business in wind energy. Or project developer Belectric, which is focusing increasingly on marketing its services in foreign markets. And also likely to survive — at least in the medium-term — are companies like SolarWorld, which has succeeded in establishing a strong brand whose equipment justifies a premium price — even if there are few qualitative differences between their products and those of Asian competitors.
In addition, new business areas will be created within the German solar market, particularly in the services sector. These could include companies that maintain solar parks, for example, or direct marketers who help operators of solar plants sell the electricity they produce to energy exchanges.

Still, most of the lights are likely to go out soon in Germany’s Solar Valley. Experts like Michael Schmela, editor in chief of the industry publication Photon International, see no future for the companies based in Bitterfeld-Wolfen. “The days of cell production in Western countries is numbered,” he said recently.

Author: Stefan Schultz
Source: Spiegel Online International
Original: http://bit.ly/HkQHhx


FOLLOW US / SIGA-NOS:
              



AN GIULIANO: Rays of the winter sun bounce off gleaming mirrors on the tiny lake of Colignola in Italy, where engineers have built a cost-effective prototype for floating, rotating solar panels.


FTCC system is designed to exploit unused areas with reflectors positioned to maximise solar capture at different times of day: professor. — Photo by Reuters

“You are standing on a photovoltaic floating plant which tracks the sun, it’s the first platform of its kind in the world!” said Marco Rosa-Clot, a professor at Florence University, proudly showing off his new project.

Rosa-Clot and his team say they are revolutionising solar power and that their floating flower-petal-like panels soaking up the Tuscan sun have already attracted a lot of interest from international buyers.

Standard solar panels on buildings or in fields have been criticised for taking up valuable agricultural land, being unsightly and losing energy through overheating – issues the floating plants would resolve.

The Floating Tracking Cooling Concentrator (FTCC) system is designed to exploit unused areas of artificial reservoirs or disused quarries.

While the water keeps the panels at low temperatures, reflectors are positioned to maximise solar capture at different times of day, making it more efficient than a traditional installation, Rosa-Clot said.

The head of Scintec, a small family business which produces a variety of renewable energy and industrial devices, Rosa-Clot said the pilot plant set up on the lake near Pisa, Tuscany, was a model of efficiency.

“It’s a small-scale design, 30 kilowatts, which would suffice for a dozen or so families.

The standard is set at 3kW per apartment,” he said.

At an estimated price of around 1,600 euros per kW including installation, a plant the size of Colignola could cost some 48,000 euros.

Scintec says its system costs 20 per cent less than ground-based structures.

‘No miraculous solution’

The flat panels are winged by reflectors and sit on raft-like structures which are anchored to the lake bed with a pylon.

Decked out in jeans and jacket, the engineer explained the benefit that a place like sun-kissed Sicily with its 75 square kilometres of artificial reservoirs and lakes could draw from the system.

“If we covered just 10 per cent of that area with floating photovoltaic panels, we would have one gigawatt of power installed,” he said – enough to power 10 million 100-watt light bulbs.

Engineer Raniero Cazzaniga, who works on the project, said that some people think classic solar installations are spoiling the landscape.

“Our system is designed for low-lying quarries. The installation is only about a metre high and usually you can’t see it until you get to the water’s edge. It is not at all intrusive,” he said.

Their cost-efficient project has sparked international interest.

Rosa-Clot said: “Reactions from abroad have been very positive. Some Koreans came to Pisa to see us and we signed a three-year contract giving them a license to build this sort of installation in South Korea.”

The Korean company Techwin has built a floating photovoltaic plant using the FTCC technology, and in Italy the Terra Moretti group has installed one on an irrigation reservoir at its winery near Livorno.

Rosa-Clot and his team are in talks with “Germans, French and Italian companies” hoping to stay ahead of the curve on water-based solar energy.

“There is no miraculous solution to the energy problem,” he said. “Our project will make it possible to have a far greater number of photovoltaic installations at an ever lower cost.”

Source: DAWN /AFP
Original: http://bit.ly/ximnVT


FOLLOW US / SIGA-NOS:
              



Lady Bird Johnson Middle School foi construída em uma área de 45.600 metros quadrados; construção inclui turbinas eólicas, painéis solares e outras tecnologias avançadas


As grandes turbinas eólicas produzem apenas 1% da energia necessária para abastecer toda a estrutura. (Fotografia: Divulgação)

O estado do Texas é conhecido nos Estados Unidos como o centro das tradições “countries”. Agora ele também está famoso por abrigar a primeira escola do país a produzir de maneira limpa toda a energia necessária para o seu funcionamento.

A Lady Bird Johnson Middle School foi construída na cidade de Irving em uma área de 45.600 metros quadrados, que facilitou a produção de energia renovável de diversas maneiras: eólica, solar e outras tecnologias avançadas que foram incluídas na construção.

O escritório Corgan Associates, de Dallas, liderou a equipe de arquitetos que construiu a escola, usada não apenas como sala de aula, mas também como referência em sustentabilidade e eficiência energética. Esses diferenciais da instituição de ensino são percebidos em cada detalhes, desde as 12 turbinas eólicas gigantes instaladas na lateral do prédio, até a grade curricular.

Por mais incrível que possa parecer, as grandes turbinas eólicas produzem apenas 1% da energia necessária para abastecer toda a estrutura. O restante é obtido a partir de 2988 painéis solares instalados no telhado. Eles são equipados com tubos cilíndricos que captam a luz do sol em 360 graus, aumentando potencialmente a capacidade de aproveitamento energético. Toda a produção excedente é direcionada para a rede de distribuição local.

Ter energia limpa disponível não seria suficiente para tornar a obra sustentável. Por isso, os arquitetos se preocuparam com a eficiência de todo o edifício. As bombas de calor geotérmicas auxiliam o sistema de arrefecimento, tornando-o 30% mais econômico. A equipe usou paredes isoladas e construiu um grande dossel nas laterais do edifício para bloquear o sol quente do Texas, mesmo assim, foram usadas muitas janelas para permitir a iluminação natural dentro das salas de aula.

Como a escola é considerada um laboratório de aprendizagem, a grade curricular inclui aulas sobre eficiência energética. Assim, os alunos do ensino fundamental podem estudar as diferenças na produção de energia solar em um dia nublado, em comparação a um dia ensolarado. Enquanto isso, os estudantes de ensino médio podem aprender a calcular a produção média geotérmica da escola. A instituição é equipada com uma plataforma de observação, onde os alunos podem examinar as placas fotovoltaicas, e monitores de energia estão espalhados por todo o corredor, para que os estudantes possam ver exatamente a quantidade de energia utilizada pela escola.

A Lady Bird Johnson Middle School está em busca do selo LEED, concedido às construções sustentáveis pelo Green Building Council.

Fonte: Exame / CicloVivo
Original: http://bit.ly/yxyqL2


FOLLOW US / SIGA-NOS: